43 research outputs found

    On Input-to-State Stability of Impulsive Stochastic Systems with Time Delays

    Get PDF
    This paper is concerned with pth moment input-to-state stability (p-ISS) and stochastic input-to-state stability (SISS) of impulsive stochastic systems with time delays. Razumikhin-type theorems ensuring p-ISS/SISS are established for the mentioned systems with external input affecting both the continuous and the discrete dynamics. It is shown that when the impulse-free delayed stochastic dynamics are p-ISS/SISS but the impulses are destabilizing, the p-ISS/SISS property of the impulsive stochastic systems can be preserved if the length of the impulsive interval is large enough. In particular, if the impulse-free delayed stochastic dynamics are p-ISS/SISS and the discrete dynamics are marginally stable for the zero input, the impulsive stochastic system is p-ISS/SISS regardless of how often or how seldom the impulses occur. To overcome the difficulties caused by the coexistence of time delays, impulses, and stochastic effects, Razumikhin techniques and piecewise continuous Lyapunov functions as well as stochastic analysis techniques are involved together. An example is provided to illustrate the effectiveness and advantages of our results

    Atomic-scale visualization of quasiparticle interference on a type-II Weyl semimetal surface

    Full text link
    We combine quasiparticle interference simulation (theory) and atomic resolution scanning tunneling spectro-microscopy (experiment) to visualize the interference patterns on a type-II Weyl semimetal Mox_{x}W1−x_{1-x}Te2_2 for the first time. Our simulation based on first-principles band topology theoretically reveals the surface electron scattering behavior. We identify the topological Fermi arc states and reveal the scattering properties of the surface states in Mo0.66_{0.66}W0.34_{0.34}Te2_2. In addition, our result reveals an experimental signature of the topology via the interconnectivity of bulk and surface states, which is essential for understanding the unusual nature of this material.Comment: To appear in Phys. Rev. Let

    Exponential Stability of Impulsive Stochastic Functional Differential Systems with Delayed Impulses

    No full text
    A class of generalized impulsive stochastic functional differential systems with delayed impulses is considered. By employing piecewise continuous Lyapunov functions and the Razumikhin techniques, several criteria on the exponential stability and uniform stability in terms of two measures for the mentioned systems are obtained, which show that unstable stochastic functional differential systems may be stabilized by appropriate delayed impulses. Based on the stability results, delayed impulsive controllers which mean square exponentially stabilize linear stochastic delay systems are proposed. Finally, numerical examples are given to verify the effectiveness and advantages of our results

    Stability Analysis of Networked Control Systems with Random Time Delays and Packet Dropouts Modeled by Markov Chains

    No full text
    This paper investigates the stability analysis problem for a class of discrete-time networked control systems (NCSs) with random time delays and packet dropouts based on unified Markov jump model. The random time delays and packet dropouts existed in feedback communication link are modeled by two independent Markov chains; the resulting closed-loop system is described by a new Markovian jump linear system (MJLS) with Markov delays. Sufficient conditions of the stochastic stability for NCSs is obtained by constructing a novel Lyapunov functional, and the mode-dependent output feedback controller design method is presented based on linear matrix inequality (LMI) technique. A numerical example is given to illustrate the effectiveness of the proposed method

    Stability Analysis of Impulsive Stochastic Functional Differential Equations with Delayed Impulses via Comparison Principle and Impulsive Delay Differential Inequality

    No full text
    The problem of stability for nonlinear impulsive stochastic functional differential equations with delayed impulses is addressed in this paper. Based on the comparison principle and an impulsive delay differential inequality, some exponential stability and asymptotical stability criteria are derived, which show that the system will be stable if the impulses’ frequency and amplitude are suitably related to the increase or decrease of the continuous stochastic flows. The obtained results complement ones from some recent works. Two examples are discussed to illustrate the effectiveness and advantages of our results

    Analysis and Design of Networked Control Systems with Random Markovian Delays and Uncertain Transition Probabilities

    No full text
    This paper focuses on the stability issue of discrete-time networked control systems with random Markovian delays and uncertain transition probabilities, wherein the random time delays exist in the sensor-to-controller and controller-to-actuator. The resulting closed-loop system is modeled as a discrete-time Markovian delays system governed by two Markov chains. Using Lyapunov stability theory, a result is established on the Markovian structure and ensured that the closed-loop system is stochastically stable. A simulation example illustrates the validity and feasibility of the results
    corecore